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Summary. The positive interpretation of conventional game theory predicts that
the joint (mixed) strategy of players in a game satisfies an equilibrium concept. The
relative probabilities of such satisfying strategies are not specified, and all other
strategies are deemed impossible. As an alternative, in this paper we use statis-
tical inference to predict the joint strategy. The associated positive problem is to
determine the density function over joint strategies.

This Predictive Game Theory (PGT) typically assigns non-zero probability den-
sity to multiple joint strategies. A loss function can be used to distill that density
to a single joint strategy via decision theory. This mapping of a game to a joint
strategy constitutes an “equilibrium concept”. It typically produces a single joint
strategy and therefore needs no refinements.

We explore a Bayesian version of PGT based on the entropic prior and a likeli-
hood that quantifies the rationalities of the players. We show that the local peaks of
the posterior density and the game’s Quantal Response Equilibria (QRE’s) approx-
imate each other. Some joint strategies are not expressible as QRE’s. In contrast,
we show that every joint strategy has non-zero density for one (and only one) set of
player rationalities.

Keywords: Quantal Response Equilibrium, Bayesian Statistics, Entropic prior, Sta-
tistical Physics
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1 Introduction

Say one wishes to predict some characteristic of interest y concerning some
physical system. To make the prediction one is provided some information
I concerning the system. Statistical analysis starts by converting I into
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a probability distribution over y.1 Such a distribution is far more infor-
mative than a single “best prediction”. However if needed we can synop-
size the distribution with a single prediction. One way to do that is to use
the mode of the distribution as the prediction. When the distribution is
a Bayesian posterior probability, P (q | I ), this mode is called the Maxi-
mum A Posterior (MAP) prediction. Alternatively, say there is a real-valued
loss function, L(y, y′) that quantifies the penalty we will incur if we pre-
dict y′ and the true value is y. Then Bayesian decision theory counsels
us to predict the value of y′ that minimizes the posterior expected loss,
∫

dyL(y, y′)P (y | I ) [Jaynes and Bretthorst, 2003, Gull, 1988, Loredo, 1990,
Bernardo and Smith, 2000, Berger, 1985, Zellner, 2004, Paris, 1994, Horn, 2003].

This standard approach to analyzing physical systems can be appropriate
even when the system being analyzed is a set of human beings playing a game.
In particular, one can apply this approach to non-cooperative strategic games,
by taking the “characteristic of interest” y to be the joint mixed strategy, q.
In this application the Bayesian posterior is a distribution over joint mixed
strategies, P (q | I ).

We use the term Predictive Game Theory (PGT) to refer to any such
application of statistical inference to games (in contrast to the use of statis-
tical inference by some players in a game). In this paper we focus on PGT
for non-cooperative strategic form games. For simplicity we will adopt the
Bayesian approach to inferring a distribution over q’s, although non-Bayesian
approaches could also be used.

The posterior assigns probability values to all joint strategies q. This con-
trasts to what conventional equilibrium concepts provide, which is a subset of
all possible q’s with no associated probability values (except in the degenerate
sense that if that set contains a single element we ca interpret it as having
probability 1.0). Due to this difference, PGT allows more sophisticated tests
comparing experiment and theory than do conventional equilibrium concepts,
e.g., tests of theoretical predictions concerning the variances of various at-
tributes of the players’ behavior.

Nonetheless, in practice sometimes one must produce a single joint strategy
as one’s “prediction” of the joint strategy. To that end, say that we have a loss
function L(q′, q) that quantifies the penalty we will incur if we predict the joint
mixed strategy q′ and the true joint mixed strategy is q. Then decision theory
counsels us to set our single prediction to the “Bayes-optimal” joint mixed
strategy, i.e., to the q′ that minimizes expected L(q′, q) under the posterior
density over q. By mapping a game to a single predicted joint strategy this
way, decision theoretic PGT provides an “equilibrium concept”. Unlike typical
equilibrium concepts [Fudenberg and Tirole, 1991, Aumann and Hart, 1992,

1 We will sometimes be loose in distinguishing between probability distributions,
probability density functions, etc., and generically we will write “P (. . .)” to mean
whichever is appropriate.
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Basar and Olsder, 1999, Binmore, 1992, Luce and Raiffa, 1985], this one does
not require refinements; typically the Bayes-optimal prediction is unique.

The Bayes-optimal equilibrium concept depends on the loss function of
the external statistician. An alternative “equilibrium concept” that does not
depend on a loss function is given by marginalizing the posterior over densities
q(x), P (q | I ), down to a (single) posterior over joint pure strategies x =
(x1, x2, . . .) (joint moves), P (x | I ). Typically the moves of the players are
stochastically coupled under that posterior over joint moves. Moreover, often
the marginal distribution over a particular player’s moves, xi, is not utility-
maximizing against the marginal distribution over the other players’ moves,
This can occur even if the support of the posterior over joint mixed strategies is
restricted to Nash equilibria. In this sense, Nash equilibria may be impossible,
and bounded rationality is unavoidable.

In this paper for pedagogical simplicity we investigate the Bayesian pos-
terior for an entropic prior over mixed strategies. For similar reasons we pick
a likelihood that says, in essence, that the logit Quantal Response Equilibria
(QRE’s [J. K. Goeree, 1999, McKelvey and Palfrey, 1995, Chen and Friedman, 1997])
are, at the very least, not inconsistent with human behavior in games against
Nature. With these choices the QRE’s turn out to be the local peaks of the
posterior for games against Nature. In particular the MAP distribution is a
QRE for such a game. However with the same choice for the likelihood, the
QRE’s are only approximations to the local peaks of the posterior for strategic
games involving other goal-seeking players.

Our choice for the likelihood means that it is parameterized by the usual
QRE parameters (the exponents in the logit distributions of the players),
which we will call the “rationalities” of the players. Some joint mixed strategies
are not a QRE for any choice of the player rationalities. For example, this can
be the case for certain Nash equilibria. However we show here that every joint
strategy — including every Nash equilibrium — has non-zero posterior for an
appropriate set of rationalities of the players.

In the remainder of this introduction we present some notation. In the
following section we discuss general aspects of PGT and the QRE. In par-
ticular we discuss their relation to bounded rationality. In the section after
that we review the entropic prior and some elementary properties of logit
distributions. In the next section we present our likelihood function based on
the QRE for a game against Nature. We then discuss the posterior over joint
mixed strategies given by combining that likelihood with the entropic prior.
In particular, we derive sufficient conditions for the QRE’s of an N -player
game to be the MAP’s of the posterior over joint mixed strategies. In our
final section we briefly survey some applications of PGT not presented in this
paper.
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1.1 Notation

We consider a general noncooperative game that has N independent players,
indicated by the natural numbers {1, 2, . . . , N}. Each player i has the finite
set of allowed pure strategies xi ∈ Xi, where |Xi| is the (finite) cardinality
of Xi. The set of all possible joint strategies is X ! X1 × X2 × . . . × XN

with cardinality |X| !
∏N

i=1 |Xi|, a generic element of X being written as
x. ui : X → R is player i’s utility function, the mixed strategy of i is the
distribution qi(xi), and q(x) !

∏N
i=1 qi(xi).

∆X is the Cartesian product of the simplices ∆Xi
(implicitly imbued with

the standard product topology over simplicial complexes). So mixed joint
strategies (i.e., product densities) are elements of ∆X . The expected utility
of player i is written as Eq(ui) =

∑

x

∏

j qj(xj)ui(x). We define each player
i’s environment function, often with the associated random variable q−i

implicit, as U i
q
−i

(xi) ! Eq−i
(ui | xi). We will sometimes write Eq(ui) = qi ·U i.

Cov is the covariance operator, defined for any countable set of variables
{y} and associated distribution p ∈ ∆Y by

Covp[a(y), b(y)] !
∑

y∈Y

p(y)a(y)b(y) −
∑

y

p(y)a(y)
∑

y

p(y)b(y).

(For clarity, we will sometimes write this as Covp(y)[a(y),−ib(y)].) Given any
player i, we will use −i to refer to the set of all N − 1 other players. In
particular, we will sometimes write q−i × qi to indicate the p ∈ ∆X with
components p(x) = p(xi, x−i) ! qi(xi)q−i(x−i).

Curly braces indicate an entire set and vertical bars the cardinality of
a finite set, e.g., {βi} is the set of all values of βi for all i, and |{βi}| the
number of such i. Bold letters, e.g., a, mean a finite-dimensional vector over
the extended real numbers R∗ (i.e., the reals together with positive and neg-
ative infinity [Aliprantis and Border, 2006]). a % b indicates the generalized
inequality that ∀i, ai ≥ bi. I(.) is the indicator function that equals 1 if the
equation that is its argument is true and 0 otherwise.

Just as “P (.)” means a distribution or density function as appropriate, so
“δ(.)” indicates the Dirac or Kronecker delta function, as appropriate. Also,
we will sometimes refer to “R+”, “[1.0,∞)”, etc., when what we really mean
are, respectively, the non-negative extended reals, the extended reals greater
than or equal to 1.0 (including +∞), etc.

To distinguish it from densities like q, a distribution (density function)
P that describes our prediction is called a predictive distribution (den-
sity function).2 So for example, P (q | I ), P (x | I ) =

∫

dq P (q | I )q(x),
and P (q | I , xj) are all predictive densities. Predictive densities reflect our
knowledge/insight/ignorance concerning the game. This contrasts with distri-
butions like q, which reflect the “physical” distributions of the players in the
game.

2 This use of the term “predictive distribution” should not be confused with the
one arising in Bayesian statistics.
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2 Equilibrium concepts and bounded rationality

2.1 The two equilibrium concepts of PGT

Say we have information I about a game involving a set of human players. We
want to predict what mixed joint strategy q those humans will play. Adopting
the role of a Bayesian statistician external to the physical system of those
humans, to make this prediction means determining P (q | I ). As described
in the introduction, if we have a loss function, then decision theory provides us
an “equilibrium concept” for the game by mapping P (q | I ) to an associated
Bayes-optimal prediction for the joint mixed strategy q.

The introduction also mentioned a second way that the posterior over ∆X

induces a single distribution over X. This second “equilibrium concept” is

P (x | I ) =

∫

dq P (x | q,I )P (q | I )

=

∫

dq q(x)P (q | I ). (1)

Both equilibrium concepts reflect two kinds of ignorance. The first kind
of ignorance is that of us, the external statistician, concerning the game and
its players. This kind of ignorance is encapsulated in P . The second kind
is the intrinsic randomness in how the players choose their moves, and is
encapsulated in each q.

The decision-theoretic equilibrium concept varies with the loss function,
unlike the P (x | I ) equilibrium concept. However while a decision-theoretic
equilibrium is always a product distribution, P (x | I ) may not be, i.e., Xi

and Xj may be statistically dependent given only I . This is true even though
the support of P (q | I ) is restricted to distributions where Xi and Xj are
independent (a linear combination of product distributions typically is not a
product distribution). In addition, say that P (q | I ) is restricted to Nash
equilibria q. Typically, if there are multiple such equilibria, then P (xi | I ) is
not an optimal response to P (x−i | I ). Even if we know that all the players
are perfectly rational, our prediction of their moves has “cross-talk” among
the multiple equilibria, which prevents perfect rationality. This is one sense
in which PGT has built-in bounded rationality.

Example 1: To illustrate the foregoing, consider a two player game in which
both players have two possible moves, L and R. Indicate any (product distri-
bution) q by two numbers, q1(x1 = L) and q2(x2 = L). Suppose that

P (q | I ) =
δ(q − (3/4, 3/4)) + δ(q − (1/4, 1/4))

2
(2)

where “δ(.)” is the Dirac delta function. Suppose also that we have quadratic
loss. For that loss function, as is easy to verify, the Bayes-optimal q is the
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average q,
∫

dq q(x)P (q | I ). Viewed as a function of x, that particular Bayes-
optimal q is the same as P (x | I ). Here they equal the distribution P (L,L) =
P (R,R) = 5/16, P (R,L) = P (L,R) = 3/16. Indicate that distribution as p.
p is not a product distribution, so P (p | I ) = 0. In other words, P (x | I ),
this game’s “equilibrium”, is a joint mixed strategy that cannot arise.

Suppose that our information I concerning a game does not explicitly
tell us that the players in the game are all fully rational. Then the rationalities
of the (human) players are random variables, and we must average over them
to get the posterior over joint mixed strategies. This generically means that
P (q | I ) is non-zero for joint mixed strategies q that are not perfectly rational.
This is another way that PGT provides built-in bounded rationality.

To help distinguish when one should use one equilibrium concept or the
other, consider a frequentist scenario, where we first give our prediction q′ ∈
∆X for the outcome of a game, and after that P (q | I ) is IID sampled an
infinite number of times. If our reward for making prediction p is the average
value of L(q′, q) over that infinite number of samples, then to maximize our
reward we should use this Bayes-optimality equilibrium concept.

Say that instead, each time P (q | I ) is sampled to produce a q, that
that q is itself sampled, to produce an x. This means that the IID samples
of P (q | I ) provide an empirical distribution of the frequency with which
each x occurs. With probability 1.0, the uniform metric distance between
this empirical distribution and P (x | I ) =

∫

dq P (q | I )q(x) is zero. But
that integral is just the second equilibrium concept discussed above. So if the
reward is how accurately we guess the empirical distribution over x’s, then
we should use this second equilibrium concept instead of the Bayes-optimality
equilibrium concept.

2.2 PGT as a meta-game

The first type of equilibrium concept in PGT can also be motivated as a “meta-
game” played against Nature. To formalize this meta-game, say we have a set
of possible games G, differing in their utility functions, their players, etc.
For each such game γ ∈ G, let ∆X (γ) indicate the set of all possible joint
mixed strategies in γ, with x ∈ X(γ) the possible joint moves in that game.
Now consider a two-stage “meta-game” Γ that consists of a statistician (S)
playing against Nature (N). In this meta-game N ’s set of possible moves is
{(γ ∈ G, q ∈ ∆X (γ))}, i.e., the set of all possible games γ, and for each such
game, the set of all possible joint mixed strategies q over the joint moves in γ.
The mixed strategy of player N is a distribution over this space, P (γ ∈ G, q ∈
∆X (γ)). At the end of the first stage of the meta-game, N ’s mixed strategy
is fairly sampled, producing an outcome (γ′, q′).

As an example, if the players in the underlying game γ′ are perfectly ratio-
nal, then the support of P (q′ | γ′) is the Nash equilibria of γ′. A priori, there
is no problem of deciding among those equilibria (the traditional motivation
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for equilibrium refinements). All of them can occur, with relative probabilities
given by P (q′ | γ′).

However in the real world sometimes a statistician must produce a single
prediction rather than a full posterior density over predictions. This provides
a second stage for our meta-game. In this second stage S is told both γ′ and
N ’s mixed strategy, P (γ ∈ G, q ∈ ∆X (γ)). Together, those give S a posterior
over what q′ is, P (q′ | γ′). In the second stage, S makes a move in ∆X (γ′),
i.e., picks a joint mixed strategy for the game γ′. We interpret that move of
the statistician S as a prediction of what q′ ∈ ∆X (γ′) was produced by the
sampling of player N .

As usual in games against Nature, N has no utility function. However S
may have a utility function, given by the negative of a loss function L(q, q′)
that quantifies how accurate her move q is as a prediction of N ’s move q′. In
this case, to maximize her expected utility the statistician chooses her move
— her prediction of the joint mixed strategy that governs the game γ′ — to
minimize her expected loss under the posterior P (q′ | γ′). Formally, she should
guess a distribution whose support is argminpEP (q′|γ′)L(p, q′). This mapping
of a game γ′ to a single predicted joint strategy comprises the first equilibrium
concept described above.

2.3 The QRE

There is a rich history of work on encapsulating bounded rationality without
recourse to posterior distributions over joint mixed strategies, e.g., stochas-
tic preference theory, non-expected utility theory, behavioral game theory
in general and prospect theory in particular, etc. (See [Starmer, 2000,
Camerer, 2003, Kahneman, 2003, Kurzban and Houser, 2005, Fudenberg and Levine, 1998,
List and Haigh, 2005] for excellent overviews of this work.) Of particular in-
terest in this paper is the approach to bounded rationality embodied in the
Quantal Response Equilibrium (QRE). This approach is a modification of
a conventional equilibrium concept where one simultaneously models every
players i in a game as playing a mixed strategy qi(xi) that is a logit (Boltz-
mann) distribution in her expected utilities. More precisely, one predicts that
the outcome of the game is a solution to the simultaneous set of equations

qi(xi) ∝ eβiEq(ui|xi) ∀i (3)

where the joint distribution q(x) =
∏

i qi(xi).
Not all q can be cast as a QRE for some appropriate {βi} (see Sec. 4.2

below). So in particular, a q that occurs in the real world will in general
differ, even if only slightly, from all possible QRE’s. This can be viewed as
a shortcoming of the QRE (a shortcoming of all equilibrium concepts with a
small number of parameters).

We use the notation that q∗{βi}
(x) means a QRE, where the parame-

ters {βi} are often implicit. In general, for any particular game and (non-
negative) {βi}, there is at least one (and may be more than one) associated q∗.
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This follows from Brouwer’s fixed point theorem [McKelvey and Palfrey, 1995,
Wolpert, 2004a].

At a Nash equilibrium each player i sets her strategy qi to maximize her
expected utility Eqi,q−i

(ui) = Eqi
(U i

q
−i

for fixed q−i. Consider instead having

each player i set qi to maximize an associated functional, the free utility:

FUi
q
−i

,Ti
(qi) ! Eqi

(U i
q
−i

) + TiS(qi). (4)

For all Ti → 0 the equilibrium q that simultaneously minimizes Fi ∀i is a Nash
equilibrium [Wolpert, 2004a, McKelvey and Palfrey, 1995, Meginniss, 1976,
Fudenberg and Kreps, 1993, Fudenberg and Levine, 1993, Luce, 1959]. For Ti >
0 one gets bounded rationality. Indeed, under the identity Ti ! β−1

i ∀i the
solution to this modified Nash equilibrium concept is a QRE.3

In the context of game theory, the free utility Lagrangian was investigated
in [Fudenberg and Kreps, 1993, Fudenberg and Levine, 1993, Shamma and Arslan, 2004].
The first attempt to derive it in the game theory context from first principles
was in [Meginniss, 1976].

Historically, the QRE was not motivated in terms of free utilities but by
modeling payoff uncertainty [McKelvey and Palfrey, 1995]. It can also be mo-
tivated as the equilibrium of a learning process by the players, a process that is
closely related to replicator dynamics [Wolpert, 2004b, Anderson et al., 2002,
Goeree and Holt, 1999]. In addition, in a non-game-theory context, the QRE
can be derived from first principles as a way to do distributed control [Wolpert and Rajnarayan, 2007,
Wolpert et al., 2006].

Finally, there has been a large body of work relating economics and statisti-
cal physics [Brock and Durlauf, 2001, Durlauf, 1999, Dragulescu and Yakovenko, 2000,
Aoki, 2004, Farmer et al., ]. (Indeed, there is now an entire field of “econo-
physics”.) Since the logit distribution is the cornerstone of statistical physics
(where it occurs in the “canonical ensemble” and the “grand canonical ensem-
ble”), the QRE is also connected to statistical physics. In particular, consider
a team game (all ui are the same) with all players sharing the same ratio-
nality. As discussed in [Wolpert, 2004a, Wolpert, 2005], for such a game the
(shared) free utility essentially becomes what in statistical physics is known
as a “mean field approximation” to the “free energy” of a system (hence the
terminology).

3 Mathematical review

Before investigating the relationship between the QRE and PGT we need to
review some elementary mathematical tools.

3 In [McKelvey and Palfrey, 1995], U i
q−i

is called “a statistical reaction function”,
and the set of coupled equations giving that solution is called the “logit equilib-
rium correspondence”.
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3.1 Review of the entropic prior

Shannon was the first person to realize that based on any of several separate
sets of very simple desiderata, there is a unique real-valued quantification of
the amount of syntactic information in a distribution P (y). He showed that
this amount of information is (the negative of) the Shannon entropy of that

distribution, S(P ) = −
∑

y P (y)ln[P (y)
µ(y) ].4 Note that for a product distribution

P (y) =
∏

i Pi(yi), entropy is additive: S(P ) =
∑

i S(Pi). So for example, the
distribution with minimal information is the one that doesn’t distinguish at
all between the various y, i.e., the uniform distribution. Conversely, the most
informative distribution is the one that specifies a single possible y.

Say that the possible values of the underlying variable y in some particular
probabilistic inference problem have no known a priori stochastic relationship
with one another. For example, y may not be numeric, but rather consist of
the three symbolic values, {red, dog, Republican}. Then simple desiderata-
based counting arguments can be used to conclude that the prior probability
of any distribution p(y) is proportional to the entropic prior, exp (αS(p)),
for some associated finite constant α ≥ 0. 5

Intuitively, this prior says that absent any other information concerning a
particular distribution p, then the larger its entropy the more a priori likely
it is. Independent of the entropic prior’s desideratum-based motivations, it
has proven has been very successful in practice [Mackay, 2003, Gull, 1988].
Indeed, it can be used to derive statistical physics, whose predictions have
been exhaustively tested [Jaynes, 1957].

Under the entropic prior the posterior probability of p given information
I concerning p is

P (p | I ) ∝ exp (αS(p))P (I | p). (5)

The associated MAP prediction of p is argmaxpP (p | I ). As an example, say
that I is a particular element of a partition on the space of possible p’s, i.e.,
a restriction of p to some particular set. Then for any α > 0, the MAP p is
the one that maximizes S(p), subject to being one of the p’s delineated by I .

Intuitively, Eq. 5 pushes us to be conservative in our inference. Of all
hypotheses p equally consistent (probabilistically) with our provided informa-
tion, we are led to view as more a priori likely those p that contain minimal

4 µ is an a priori measure over y, often interpreted as a prior probability distri-
bution. Unless explicitly stated otherwise, here we will always assume it is uni-
form, and not write it explicitly. See [Jaynes, 1957, Jaynes and Bretthorst, 2003,
Cover and Thomas, 1991].

5 The issue of how to choose α for a particular application — or better yet integrate
over it — is subtle, with a long history. See work on ML-II [Berger, 1985] and the
“evidence procedure” [Strauss et al., 1994].
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extra information beyond that provided in I .6 For this reason, the entropic
prior has been proposed as a formalization of Occam’s razor.

Note that the entropic prior evaluated for a product distribution is itself
a product, i.e., if q(x) =

∏

i qi(xi), then eαS(q) =
∏

i eαS(qi). As a result, by
symmetry the associated marginal over x,

∑

x

q(x)P (q) ∝
∑

x

∏

i

qi(xi)e
αS(qi), (6)

must be uniform over x.

3.2 Miscellaneous properties of logit distributions

Certain simple identities and associated definitions concerning logit distribu-
tions will prove useful below. First, given any function f : Y → R and c ∈ R,
as in statistical physics we define the associated partition function

Zf (c) !
∑

y

ecf(y) (7)

where we implicitly assume that f is bounded. For finite c, the logit (Boltz-
mann) distribution in values of f(y) having exponent c is defined by

Lf,c(y) ! ecf(y)/Zf (c) (8)

for finite c, and for infinite c by Lf,∞(y) ! δ(y, argmaxf(.)), Lf,−∞(y) !

δ(y, argminf(.)). Note that for any c and f , Lf,c(y) is uniform over any set of
y sharing the same value for f(y). We define the Boltzmann utility as

K(f, c) !
∑

y

f(y)Lf,c(y). (9)

K(f, c) is the expected value of f under the logit distribution in values of
f having (potentially infinite) exponent c. The function K(f, .) : R → R is
C∞. Moreover, for any c ∈ R∗, K(., c) : R|Y | → R is continuous. (It can be
nondifferentiable for infinite c at the point where f(y) = f(y′) for some pair
(y, y′ *= y).)

A crucial identity in statistical physics which we will also use here gives
the first moment of f under the logit distribution:

K(f, c) =
dln[Zf (c)]

dc
. (10)

6 This is different from saying that the larger s is, the more a priori likely it is that

the system has that s: PS(s) =
R

dp δ(S(p) − s)P (p) =
R

dp δ(S(p)−s)exp (αS(p))
R

dp exp (αS(p))

which may actually decrease with increasing s, depending on the nature of dS
dp

.
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Similarly, the variance of f under the logit distribution over f(y) values equals
the second derivative of ln[Zf (c)] with respect to c. This variance is strictly
positive for finite c and non-constant f . So for such f , K(f, .) is a nowhere
decreasing bijection from R∗ → [minyf(y)),maxyf(y))].

We will often want to find the p ∈ ∆Y that maximizes S(p) subject to the
constraint that

∑

y f(y)p(y) = k. The (unique) solution is the logit distribu-
tion Lf,c where c is a Lagrange parameter set to enforce the constraint, i.e., set
so that K(f, c) = k. For example, consider maximizing the entropy of a player
with distribution p in a game against Nature subject to a provided expected
value of that player’s utility function, k = Ep(f). The Lagrangian for this
problem is the free utility of the player, Ff,c(p). As mentioned at the end of
Sec. 2.3, the associated solution for p is the QRE. In this game-against-Nature
context, that is just the logit distribution Lf,c.

Since for the proper value of c, Lf,c is the maximizer over p ∈ ∆Y of S(p)
subject to the constraint f · p = k, it is also the maximizer of S(p) subject
to the constraint f · p = K(f, c). This can be used to show that the entropy
of the logit distribution Lf,c cannot increase as c rises.7 So the picture that
emerges is that as c increases, the logit distribution gets more peaked, with
lower entropy. At the same time, it also gets higher associated expected value
of f .

4 The posterior for the entropic prior

The posterior over possible joint mixed strategies q is given by the prior and
the likelihood. For pedagogical simplicity we have adopted the entropic prior.
This means that if we know nothing about the players in a game (so in par-
ticular we do not know their utility functions, their rationalities, etc.), then
we view a particular almost uniform joint mixed strategy q as a priori more
likely than a particular highly peaked joint mixed strategy q. α quantifies how
much more likely we find such relatively uniform q.

Given a choice for the prior, our next task is to choose the likelihood, i.e.,
to formalize what we know about the human players a priori.

7 To see this say we replace the invariant p · f = K(f, c) with p · f ≥ K(f, c).
Entropy is a concave function of its argument, as is this inequality constraint,
so our new optimization problem is concave. Therefore the critical point of the
associated Lagrangian is the optimizing p. Now if we increase c, and therefore
increase K(f, c), the feasible region for our new invariant decreases. This means
that when we do that the maximal feasible value of S cannot increase. So the en-
tropy of the critical point of the Lagrangian for our new invariant cannot increase
as c does. However that critical point is just the logit distribution p = Lf,c, i.e.,
it is the optimizing p for the original equality invariant, p · f = K(f, c). So the
property that increasing c cannot increase the entropy under the new invariant
must also hold for the original equality invariant.
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4.1 The likelihood

The first thing we know about the players is that under their joint mixed
strategy their moves are statistically independent (since we are restrict-
ing attention to normal form games). Beyond that, all of the insights of
behavioral game theory, psychology, and human modeling [Camerer, 2003,
Starmer, 2000, Allais, 1953, List and Haigh, 2005, Kurzban and Houser, 2005]
could be brought to bear on the task of determining the likelihood.

Here though we will not try to formalize those insights. Instead we will
simply assume that any player will try to maximize her expected utility, to
the best of her computational abilities, the best of her insights into the other
players and the game structure, etc. To formalize this minimal assumption,
first consider just those instances in which player i is confronted with some
single environment U i

q
−i

. We assume that on average, the move i chooses

results in the same utility in all those instances: qi · U i
q
−i

has the same (po-

tentially unknown) value in all of them. We write that value as εi(U i
q
−i

). I

is the restriction that q is a product distribution and that simultaneously
for all players i, qi · U i

q
−i

= εi(U i
q
−i

). As an example, at a Nash equilibrium

εi(U i
q
−i

) = maxxi
U i

q
−i

(xi) ∀i.

This likelihood amounts to saying that as far as player i is concerned
when she chooses her move, there is only one salient aspect of q−i. That
salient aspect is the effect of q−i on the utility values for i’s possible moves,
i.e., its effect on U i

q
−i

. The likelihood embodies this aspect of q−i and ignores

all other (non-salient) aspects of q−i. In stipulating that only the effects of
q−i on her utility are salient to any player i, this likelihood follows the spirit
of the axioms of utility theory.

Our next step is to specify the function εi. To do this we consider how
player i would behave in a counterfactual “game against Nature”. In that
new problem we focus on just one player i, fixing the mixed strategies of the
others, so that there are no common knowledge issues, no reasoning about the
reasoning of others. Our presumption is simply that any player i’s expected
utility in such a game against Nature is consistent with what it would be if
— as in a QRE — she were using a logit mixed strategy for some associated
exponent bi. In essence, we assume that at the very least, the QRE is consistent
with a player’s expected utility in games against Nature, i.e., that its likelihood
is non-zero in such a game.

We refer to the exponent bi in i’s likelihood as i’s rationality. There is
only one QRE for a game against Nature, namely q∗i = LUi

q
−i

,bi
. Since εi must

give the expected value of U i
q
−i

under this distribution,

εi(fi) ! K(fi, bi) (11)

for some appropriate constant bi. Our likelihood for this game against Nature
is that (q is a product distribution and that) qi · U i

q
−i

= K(U i
q
−i

, bi) with q−i
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being fixed. So the posterior is

P (q | I ) ∝ eαS(q)I(qi · Uq
−i

= K(Uq
−i

, bi))
∏

j &=i

δ(qj − q′j) (12)

where {q′j : j *= i} are the pre-fixed distributions of all players other than i.
The MAP for this game against Nature equals the associated QRE:

Proposition 1. For a game of player i against Nature, there is a single local
peak of the posterior over qi for rationality bi, and there is only one QRE qi

for logit exponent bi, and those two qi’s are identical.

Proof. For α > 0 any local peak of the posterior is a distribution q = (qi, q′−i)
that maximizes S(q) subject to the constraint that qi · U i

q
−i

= K(U i
q
−i

, bi).

Since S is additive for product distributions, this q is given by the qi’s that
maximize S(qi) subject to the constraint that qi · U i

q
−i

= K(U i
q
−i

, bi). As

described at the end of Sec. 3.2, there is a unique such local peak qi, given by
the logit distribution LEq

−i
(ui|.),bi

(xi). This proves the claim for α > 0. The

validity of the claim for α = 0 is immediate. QED.

The likelihood for more general games is given by requiring that q be a
product distribution and that Eq. 11 hold simultaneously for all players i
(other than Nature players). Combining, our posterior for this more general
case is

P (q | I ) ∝ eαS(q)I(q ∈ ∆X )
N
∏

i=1

I(qi · Uq
−i

= K(Uq
−i

, bi)). (13)

Note that any QRE with logit exponents {bi} has its likelihood equal to 1.
Unlike motivations of the QRE, to motivate our choice of εi we do not

say that each qi must be a logit distribution. The probability density over
possible qi is not assumed to be a delta function about a logit qi. Rather
we make the weaker presumption that QRE distribution has non-zero likeli-
hood in the single-player inference problem. That presumption motivates a
b-parameterized likelihood that can then be applied in the multi-player sce-
nario. (An even weaker assumption — beyond the scope of this paper — would
have b be a random variable that is sampled before the game is played.)

Define Ib as the set of q such that ∀i, qi · U i
q
−i

= K(U i
q
−i

, bi), where it

is implicitly assumed that b % 0. For any such b there is always at least
one q ∈ Ib; every QRE for the set of logit exponents b is a member of Ib.
Since the support of the entropic prior is all ∆X , this means that for any
b % 0, the posterior conditioned on q ∈ Ib is always non-zero at every q∗

b
.

Accordingly, the posterior is well-defined, and therefore so are its local peaks,
and in particular the MAP.

On the other hand, for any finite b, in general there are uncountably many
q’s that also satisfy Ib in addition to the QRE’s. In fact, in general P (q | Ib)
is non-zero for q’s that are not products of logit distributions.
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As a result of our posterior, even though the moves {xi} of the players are
independent for any particular q (since q is a product distribution), our (!) lack
of knowledge concerning the set of all the instances might result in a posterior
P (q | I ) in which the distributions {qi} are statistically coupled. (Recall that
q reflects the players, and P reflects our inference concerning them.) Now
for the entropic prior P (q) there is no statistical coupling between xi and
xj in the prior distribution P (x) (cf. Eq. 6). However the potential coupling
between the {qi} means that in the posterior distribution, the moves are not
statistically independent (assuming one doesn’t condition on q). In such a
situation, to us, xi and xj are statistically coupled. This means that in some
situations the joint mixed strategy P (x | I ) cannot equal a Nash equilibrium
of the underlying game; a Nash equilibrium is impossible.

These conclusions about the impossibility of Nash equilibria do not depend
on our choice of εi, or even on our encapsulating I in terms of εi’s. (N.b., we’re
explicitly allowing the case where P (q | I ) is restricted to Nash equilibria.)
Rather they come from the fact that our prior allows non-zero probability for
all of the Nash equilibria.

Example 2: Consider a common payoff symmetric game involving two
players, each with move space {A,B}. Let the shared utility function be
u(A,A) = 2, u(A,B) = u(B,A) = 0, u(B,B) = 1. This game has three Nash
equilibria: (A,A), (B,B), and the mixed strategy where each player makes
move A with probability 1/3. The first two of those q have entropy 0 (they are
delta functions). The associated value of the entropic prior, exp(αS(q))/Z(α),
is just [Z(α)]−1. The last Nash equilibrium has entropy ln[3] - 2/3ln[2].

If we define w(α) ! exp(α{ln[3]− 2/3ln[2]}), then the prior probability of
the first two (pure strategy) Nash equilibria are 1/[2 + w(α)], and the prior
probability of the last (mixed strategy) Nash equilibrium is w(α)/[2 + w(α)].
Since all three equilibria have the same likelihood (namely, 1), these prior
probabilities are also their respective posterior probabilities, P (q | I ), i.e.,
they are the three values of aj . Accordingly,

P (x = (A,A) | I ) =
1

2 + w(α)
+

w

(2 + w)
[
1

3
]2 =

9 + w(α)

9(2 + w(α))
,

P (x = (B,B) | I ) =
1

2 + w(α)
+

w

(2 + w)
[
2

3
]2 =

9 + 4w(α)

9(2 + w(α))
,

P (x = (A,B) | I ) = P (x = (B,A) | I ) =
2w

9(2 + w(α))
(14)

Not only is this distribution P (x | I ) not a Nash equilibrium; neither player
i plays best-response to P (x−i | I ). In fact, P (x | I ) is not even a product
distribution.
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4.2 The posterior q covers all Nash equilibria

Let q be a Nash equilibrium where for some player i, R ≡ supp[qi] includes
multiple xi ∈ Xi and qi is not uniform over R. Since q is a Nash equilib-
rium, Eq

−i
(ui | xi) is uniform over R. This means that any logit distribution

LEq
−i

(ui|.),c(xi) must be uniform across all xi ∈ R. Since by hypothesis qi is

not uniform over R, this means that qi cannot be described by a logit distribu-
tion. So such a Nash equilibrium q is not a QRE for any vector of rationalities
b, even one including infinite components. This complicates consideration of
Nash equilibria in terms of QRE’s, leading to the analysis of limits of QRE’s
as b → ∞.

Such complications do not arise in PGT, as illustrated in the following two
results:

Proposition 2. For any q ∈ ∆X there is one and only one b such that
K(U i

q−i
, bi) = qi ·U i

q−i
∀i. Define B : ∆X → RN as that function taking any q

to the associated vector of rationalities. Then Bi is differentiable everywhere
in ∆X that it is finite.

Proof. Pick any player i. If qi · U i
q−i

= max[U i
q−i

(xi)] then K(U i
q−i

, bi) =

qi ·U i
q−i

∀i iff bi = ∞. Similarly K(U i
q−i

, bi) =min[U i
q−i

(xi)] iff bi = −∞. Now

consider the remaining cases, where qi ·U i
q−i

∈ (min[U i
q−i

(xi)],max[U i
q−i

(xi)]).

Due to the bijectivity of K(U i
q−i

, .) with that codomain, we again see that there

is a unique bi such that K(U i
q−i

, bi) = qi · U i
q−i

∀i. This completes the first
claim.

To establish the second claim evaluate the derivative of Bi and show that it
is finite. We do this by applying the chain rule to K(U i

q−i
, Bi(q))−qi ·U i

q−i
= 0.

The result for the components qi(xi) and q−i(x−i) of the argument list of Bi

are

∂Bi(qi, q−i)

∂qi(xi)
=

U i
q−i

(xi)
∂K(Ui

q−i
,Bi)

∂Bi

∂Bi(qi, q−i)

∂q−i(x−i)
=

(

qi(xi) ·
∂Ui

q
−i

(xi)

∂q−i(x−i)

)

−
∂K(Ui

q−i
,Bi)

∂q−i(xi)

∂K(Ui
q−i

,Bi)

∂Bi

where the shared denominator is non-zero since Bi is finite by hypothesis and
since K(U i

q−i
, .) is an increasing function of its second argument. QED.

We can use Prop. 2 to establish the following result:

Proposition 3. For any q ∈ ∆X there is one and only one b such that P (q |
Ib) *= 0. For that b, for all q′ ∈ ∆X ,

P (q | Ib)

P (q′ | Ib)
≥ |X|−α (15)
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where α is the exponent of the entropic prior.

Proof. Prop. 2 means that for every q ∈ ∆X , there is one (and only one)
b such that the likelihood P (Ib | q) is non-zero. Since the entropic prior is
non-zero for all q, this means that every q has non-zero posterior P (q | Ib)
under exactly one b, as claimed.

Given q, define b∗ ≡ B(q), so that P (Ib∗ | q) = 1. Now P (Ib∗ | q′) ≤ 1
for any q′. Accordingly, the ratio in the proposition is bounded above by the
ratio of the exponential prior at q to that at q′. However the ratio of eαS(q′′)

between any two points q′′ is bounded below by exp(α·0)

exp(αln(|X|))
. QED.

In particular, this result holds for Nash equilibrium q; such equilibria arise
for b = ∞. The relative probabilities of those Nash q are given by the ratios
of the associated prior probabilities. Prop. 3 also holds for any particular q
infinitesimally close to one of the Nash equilibria. In this sense, the posterior
probability is arbitrarily tightly restricted to any one of the Nash equilibria
for some appropriate b.

The picture that emerges then is that ∀b, ∃ noni-empty proper submani-
fold of ∆X that is the support of the associated posterior. There is no overlap
between those submanifolds (one for each b), and their union is all of ∆X ,
including the Nash equilibria q’s (for which b = ∞). Within any single one
of the submanifolds no q has too small a posterior (cf. Prop. 3). This is be-
cause all q within a single submanifold have the same value (namely 1) of
their likelihoods. Accordingly, the ratios of the posteriors of the q’s within the
submanifold is given by the ratios of (the exponentials of) the entropies of
those q’s.

4.3 The MAP q

Naively, one might presume that a QRE is the MAP of our posterior. After all,
this is the case when a single player plays against Nature. Furthermore, when
there are multiple players, every QRE q obeys our constraints that Eq(ui) =
εi(U i

q) ∀i, and it maximizes the entropy of each player’s strategy considered
in isolation of the others. However in general a QREwill not maximize the
entropy of the joint mixed strategy subject to our constraints when there
are multiple players. In other words, while MAP for each individual player’s
strategy, in general it is not MAP for the joint strategy of all the players. The
reason is that setting each separate qi to maximize the associated entropy
(subject to having q obey our invariant), in a sequence, one after the other,
will not in general result in a q that maximizes the sum of those entropies.
So it will not in general result in a q that maximizes the entropy of the joint
system.

Proceeding more carefully, call a local maximum of the posterior that is in
the interior of ∆X a “local peak” of the posterior. As shorthand, we introduce
the following notation:
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Definition 1. For all j, b,φ ∈ RN ,

q†j (xj) ! LUj
q
−j

,bj
(xj),

rj(q, xi) !
∑

xj

q†j (xj)Eq(u
j | xi, xj) [1 + bj{Eq

−j
(uj | xj) − Eq

−j
×q†

j
(uj)}],

si(φ, xi) !
∑

j &=i

φj

[

Eq
−i

(uj | xi) − rj(q, xi)
]

Then we have the following lemma:

Lemma 1. For a given b, any local peak of the posterior is given by the qi

members of a set of values {qi ∈ ∆Xi
,λi ∈ R} that simultaneously solves the

following equations for all i:

qi(xi) ∝ e
λiU

i
q
−i

(xi)+si(λ,xi)
,

Eq(u
i) = K(U i

q
−i

, bi).

Proof. By examination of the posterior, its maxima are q’s in ∆X that maxi-
mize S(q) subject to the constraints in Eq. 11. (Recall that there always exist
q ∈ ∆X obeying those constraints.) So the local peaks of the posterior are
the critical points of the Lagrangian L (q, {λi}) = S(q) +

∑

i λi(qi · U i −
εi(U i)) +

∑

i γi(
∑

xi
qi(xi) − 1) that obey qi(xi) > 0 ∀i, xi, where the λi are

Lagrange parameters enforcing the constraints in Eq. 11 and the γi are La-
grange parameters forcing each qi to be normalized. At any such critical point,
∀ i, xi ∈ Xi,

0 =
∂L

∂qi(xi)
= −1 − γi − ln[qi(xi)] + λiE(ui | xi) +

∑

j &=i

λj [E(uj | xi) −
∂εj(U j)

∂qi(xi)
]

= −1 − ln[qi(xi)] + λiE(ui | xi) +

∑

j &=i

λj



Eq
−i

(uj | xi) −
∑

xj

∂εj(U j)

∂U j(xj)
Eq

−i,−j
(uj | xi, xj)



 .

Accordingly, at such q’s, for all players i,

qi(xi) ∝ e
λiEq

−i
(ui|xi)+

P

j $=i λj

»

Eq
−i

(uj |xi)−
P

xj

∂εj(Uj)

∂Uj(xj)
Eq

−i,−j
(uj |xi,xj)

–

where the proportionality constant enforces normalization. By inspection, for
any real-valued Lagrange parameters, each such qi does obey qi(xi) > 0 ∀xi,
as required.

To proceed plug in Eq. 11 and then Eq. 10 to evaluate ∂εj(U
j)

∂Uj(xj)
. Then

interchange the order of the two differentiations, to differentiate with respect
to U j(xj) before differentiating with respect to bj The result is
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∂εj(U j
q
−j

)

∂U j
q
−j

(xj)
= q†j (xj)[1 + bj{U

j
q
−j

(xj) − Eq†
j
(U j

q
−j

)}]

where we have made explicit the dependence of each U j on q−j . Next use the
definition of U j

q
−j

and the fact that q is a product distribution to expand this

result as

∂εj(U j
q
−j

)

∂U j
q
−j

(xj)
= q†j (xj)[1 + bj{Eq

−j
(uj | xj) − Eq

−j
×L

U
j
q
−j

,bj

(uj)}].

Now plug this result into the outer summands in our equation above for each
qi(xi), getting

∑

xj

∂εj(U
j
q
−j

)

∂Uj
q
−j

(xj)
Eq(uj | xi, xj)

=
∑

xj

q†j (xj)Eq(u
j | xi, xj) [1 + bj{Eq

−j
(uj | xj) − Eq

−j
×q†

j
(uj)}].

Plugging in the definition of rj completes the proof. QED.

In particular, the MAP is a local peak of the posterior. Therefore if the MAP
is interior to ∆X it must solve the coupled set of equations given in Lemma 1.

4.4 The modes of P (q | I ) and the QRE’s

It is illuminating to compare the conditions of Lemma 1 for q to be a local
peak of the posterior to conditions for it to be a QRE: any QRE is given by
the qi members of a set of values {qi ∈ ∆Xi

,λ′i ∈ R} that simultaneously
solves the following equations for all i:

qi(xi) ∝ e
λ′

iU
i
q
−i

(xi)
,

Eq(u
i) = K(U i

q
−i

, bi) (16)

where the second equation forces λ′i = bi ∀i.8

This comparison suggests that in some circumstances the QRE is an ap-
proximation of the local peaks of the posterior P (q | I ). To confirm this, first
note that, ultimately, the only free parameter in our solution for the local peak
q’s is b. In addition, any QRE q∗ is a solution to a set of coupled nonlinear
equations parameterized by b. In general there is a very complicated relation
between the the local peak q’s and the q∗’s, one that varies with b (as well as
with the {uj}, of course).

8 To see this, use the first equation to write Eq(u
i) = K(U i

q
−i

, λ′

i), and recall that

K(., .) is monotonically increasing in its second argument.
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Intuitively, the reason for the difference between the two solutions is that
each player i does not operate in a fixed environment, but rather in one con-
taining intelligent players trying to adapt their moves to take into account i’s
moves. This is embodied in the likelihood of Eq. 11. In contrast to that likeli-
hood, the likelihoods of the QRE each implicitly assume that the associated
player i operates in a fixed environment.

Formally, the difference arises because each qi not only appears in the first
term in the argument of I(qi · Uq

−i
= K(Uq

−i
, bi)) (which is the case in the

game against Nature). It also occurs in the second arguments of I(qj ·Uq
−j

=

K(Uq
−j

, bj)) for the players j *= i. This means that if we change qi, then
the likelihood of Eq. 11 induces a change to q−i, to have the invariant for
the players other than i still be satisfied. This change to q−i then induces a
“second order” change to qi, to satisfy the invariant for player i.

This second-order effect will not arise in a game against Nature, which
treats the other players as fixed. This reflects the fact that such a game against
Nature is an instance of decision theory, lacking the common knowledge aspect
of games with multiple conflicting players.

Now in general it is not the case that for every i, qi(xi) equals q†i (xi) on an
xi-by-xi basis. Indeed, if this were the case then q would be a QRE. However
as an approximation we can impose the weaker condition that the differences
between those distributions approximately cancel out inside the appropriate
sum from Lemma 1:

Eq†
j ×q

−j,−i
(uj | xi) =

∑

xj

q†j (xj)Eq
−j,−i

(uj | xi, xj)

!
∑

xj

qj(xj)Eq
−j,−i

(uj | xi, xj)

= Eq
−i

(uj | xi). (17)

(In particular, any QRE obeys this approximation exactly.) Making this ap-
proximation inside all rj , for any φ ∈ RN ,

si(φ, xi) = −
∑

j &=i

φjbj

∑

xj

q†j (xj)Eq
−j,−i

(uj | xi, xj)
[

Eq
−j

(uj | xj) − Eq
−j

×q†
j
(uj)

]

(18)

which we can write as

si(φ, xi) = −
∑

j &=i

φjbjCovq†
j (xj)

[

Eq(u
j | xi, xj), Eq(u

j | xj)
]

. (19)

Combined with Lemma 1 this provides the following result:

Theorem 1. Let q be a joint mixed strategy where ∃ µ ∈ RN and t ∈ R such
that simultaneously ∀i, xi,
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∑

j &=i

µjbjCovqj(xj)[Eq(u
j | xj , xi), Eq(u

j | xj)] = (µi − bi)Eq(u
i | xi) + t.

Then the following two conditions are equivalent:
i) q is a QRE.
ii) q is a local peak of the posterior and obeys Eq. 17 exactly.

Proof. It is immediate that if q is a QRE then it obeys Eq. 17 exactly. This
means that si(µ, xi) equals the expression in Eq. 19 for φ = µ. Accordingly, the
condition in the theorem involving a sum of covariances means that the expo-
nent in Lemma 1 reduces to (bi+λi−µi)Eq

−i
(ui | xi)−t for all i, xi ∈ Xi. So by

that lemma, for our q to be a local peak of the posterior it suffices for there to

be a λ ∈ RN such that Eq(ui) = K(U i
q
−i

, bi) and qi(xi) ∝ e
(bi+λi−µi)Eq

−i
(ui|xi)

for all i, xi. Since q is a QRE with exponent bi, both of these conditions are
met for λ = µ. Therefore q is a local peak of the posterior, as claimed.

To prove the converse, plug the condition in the theorem involving a sum of
covariances with φ = µ into the expression in Eq. 19 for si(φ, xi). Identifying
λ′ = λ− µ + b, this reduces Lemma 1 to the conditions in Eq.’s 16 sufficient
for q to be a QRE. QED.

In particular, say that
∑

j &=i(bj)2Covq∗
j (xj)[Eq∗(uj | xj , xi), Eq∗(uj | xj)] is

independent of xi ∀i at some QRE q∗. Then the condition in Thm. 1 holds,
with µ = b. So any such QRE is a local peak of the posterior.

Particularly for very large systems (e.g., a human economy), it may be
that at some QRE q∗, Eq∗(uj | xj , xi) = Eq∗(uj | xj) for almost any i, j and
associated moves xi, xj . In this situation, at the QRE the move of almost
any player i has no effect on how the expected payoff to player j depends on
j’s move. If this is in fact the case for player i and all other players j, then
the covariance for each j, xi that occurs in Thm. 1 reduces to the variance of
Eq∗(uj | xj) as one varies xj according to q∗j . By the discussion in Sec. 3.2
this variance is given by the partition function:

Varq∗
j
(Eq∗(uj | xj)) = Varq∗

j
(U j

q∗) =
∂2ln(ZUj

q∗
(b′j))

∂(b′j)
2

|b′j=bj
. (20)

In particular, for bj → ∞ — perfectly rational behavior on the part of
agent j — the variance goes to 0. So assume that Eq. refeq:approx holds
to a very good approximation. Then if every player i is “decoupled” from
all other players, in the limit that all players become perfectly rational the
condition in Thm. 1 generically is met for µ = b. (The bj-dependence in the
covariance occurs in an exponent, and therefore generically overpowers the
(bj)2 multiplicative factor.) So the QRE’s approach the local peaks of the
posterior in that situation.

On the other hand, if the players have bounded rationality, their variances
are nonzero. In this case the expression in Thm. 1 is nonzero for each i, j, xi.
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Typically for fixed i the precise nonzero value of that variance will vary with
xi. In this case, Thm. 1 suggests that the QRE differs from the local peaks of
the posterior, and in particular differ from the MAP.

There are many ways that these results can be extended. For example say
a particular QRE is a local peak of the posterior for some b. Then we can use
a Laplace expansion to approximate the posterior in the vicinity of that QRE
as a Gaussian projected onto the submanifold of joint mixed strategies that
obey Eq. 16 [Robert and Casella, 2004]. Say that that QRE is close to the
mean of the posterior over q’s (e.g., this would be the case if that QRE is the
MAP and the posterior is sharply peaked). Then our Gaussian approximation
could be used to approximate the variance of any function of q under our
posterior.

5 Other applications of PGT

Under the likelihood introduced above, if q−i changes, then U i
q−i

changes,
and therefore qi may have to change. So this likelihood implicitly presumes
the players have had some form of interaction to couple them (just as
do conventional equilibrium concepts when they have multiple solutions).
In [Wolpert, 2005] an different likelihood is introduced that involves no such
coupling. This likelihood can be viewed as a novel formulation of common
knowledge [Aumann, 1999, Aumann and Brandenburger, 1995, Fudenberg and Tirole, 1991].

Interestingly, as it arises with this likelihood, bounded rationality is iden-
tical to an information-theoretic cost of computation. In this sense, under this
likelihood cost of computation is derived as a cause of bounded rationality. It
is not simply imputed, as an explanation of experimentally observed bounded
rationality.

While various models of bounded rationality have been found to have some
experimental validity (e.g., QRE’s), no model with a small number of parame-
ters will ever hold exactly. This means that to analyze the rationality of human
behavior in experimental settings we need a way to quantify the rationality
of any mixed strategy in any environment. As elaborated in [Wolpert, 2005],
PGT provides such a rationality measure, one that can be derived from first-
principles involving the Kullbach-Leibler distance.

PGT is applicable to many domains beyond those considered in this paper.
In particular, in work in progress, PGT has been used to derive power law
distributions over the possible outcomes in unstructured bargaining. Those
distributions have the Nash bargaining solution as their mode.
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